S.E. SEM - III / ELTL / CREDIT BASE / MAY 2019 / 14.05.2019

Q.P. Code: 37077

05

05

05

Total marks: 80

- Note 1) Question number 1 is compulsory. 2) Attempt any three questions from the remaining five questions. 3) Figures to the right indicate full marks. Q.1 a) Find the Laplace transform of $sinh^5t$. Find an analytic function whose imaginary part is b) $e^{-x}(y\cos y - x\sin y)$. Find the Fourier series for $f(x) = 1 - x^2$ in (-1, 1). 05 d) Evaluate $\int_C \overline{F} \cdot d\overline{r}$ where $\overline{F} = 2x i + (xz - y) j + 2z k$ from
- Q.2 a) Find a cosine series of period 2π to represent $\sin x$ in $0 \le x \le \pi$. 06

O(0,0,0) to P(3,1,2) along the line OP.

- Find a, b, c if $\bar{F} = (axy + bz^3) i + (3x^2 cz) j + (3xz^2 y) k$ b) 06 is irrotational.
- c) 08 Find the image of the circle |z| = k where k is real under the bilinear transformation $w = \frac{5-4z}{4z-3}$.
- Prove that $J_{\frac{1}{2}}(x) = \tan x \cdot J_{-\frac{1}{2}}(x)$. Q. 3 06
 - Find the inverse Laplace transform of the following function by 06 convolution theorem $(s+2)^2$ $(s^2+4s+8)^2$
 - Obtain the complex form of Fourier series for $f(x) = e^{ax}$ in (-l, l)08 where a is not an integer.
- Find the angle between the normals to the surface $xy = z^2$ at the points Q. 4 a) 06 (1, 4, 2) and (-3, -3, 3).
 - b) Prove that 06 $x^2 J_n''(x) = (n^2 - n - x^2) J_n(x) + x J_{n+1}(x);$ $n = 0, 1, 2, \dots$

Paper / Subject Code: 49602 / APPLIED MATHEMATICS-III

Q.P. Code: 37077

c)(i) Find the Laplace transform of sinhat sin at.

04

(ii) Find the Laplace transform of $te^{-4t} \sin 3t$.

04

Q. 5 a) Prove that $J_2(x) = J''_0(x) - \frac{J_0'(x)}{x}$.

- 06
- b) If $v = e^x \sin y$, show that v is harmonic and find the corresponding analytic function.
 - 08

Find the Fourier series for f(x) in $(0, 2\pi)$, $f(x) = \begin{cases} x, & 0 < x \le \pi \\ 2\pi - x, & \pi \le x < 2\pi \end{cases}$

08

- Hence, deduce that
- $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \dots$
- Q. 6 a) Show that the set of functions $\cos nx$, $n = 1, 2, 3, \dots$ is orthogonal on $(0, 2\pi)$.
 - b) Using Green's theorem evaluate $\int_C \bar{F} \cdot d\bar{r}$ where C is the curve enclosing the region bounded by $y^2 = 4ax$, x = a in the plane z = 0 and

$$\bar{F} = (2x^2y + 3z^2)i + (x^2 + 4yz)j + (2y^2 + 6xz)k.$$

c) Use Laplace transform to solve

08

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1 \text{ with } y(0) = 0, y'(0) = 1.$$
